题目内容
【题目】设函数f(x)=lg(﹣x2+5x﹣6)的定义域为A,函数g(x),x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.
【答案】(1)A∩B=(2,)(2)(0,]
【解析】
(1)解一元二次不等式求得集合,当时,利用的单调性求得的值域,也即求得集合,由此求得两个集合的交集.
(2)根据的单调性求得的值域,根据必要不充分条件的知识,判断出是的真子集,由此列不等式组,解不等式组求得的取值范围.
(1)由﹣x2+5x﹣6>0,即x2﹣5x+6<0,解得2<x<3,即A=(2,3),
当m=2时,g(x),x∈(0,2)上为减函数,
∴g(x),即B=(,),
则A∩B=(2,);
(2)∵g(x),x∈(0,m)上为减函数,
∴g(x),即B=(,)
若“x∈A”是“x∈B”的必要不充分条件,
则是的真子集,
即,则,
即0<m,
故实数m的取值范围是(0,].
练习册系列答案
相关题目