题目内容
求由抛物线y2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积.
【思路点拨】将抛物线方程化为y=±.利用导数求出其切线方程,再由定积分的几何意义求面积.
解:y=±,y'x=±.
∵过点(2,1)的直线斜率为f'(2)=,
直线方程为y-1=(x-2),即y=x.同理,过点(2,-1)的直线方程为y=-x,抛物线顶点在(1,0).如图所示:
由抛物线y2=x-1与两条切线y=x,y=-x围成的图形面积为:
S=S△AOB-2dx=×2×2-2××(x-1=2-(1-0)=.
解:y=±,y'x=±.
∵过点(2,1)的直线斜率为f'(2)=,
直线方程为y-1=(x-2),即y=x.同理,过点(2,-1)的直线方程为y=-x,抛物线顶点在(1,0).如图所示:
由抛物线y2=x-1与两条切线y=x,y=-x围成的图形面积为:
S=S△AOB-2dx=×2×2-2××(x-1=2-(1-0)=.
练习册系列答案
相关题目