题目内容
3.如果(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的展开式中各项系数之和为8,则${∫}_{0}^{1}$xndx的值是( )A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 利用赋值法求出n,然后计算定积分.
解答 解:令x=1,得到(3-1)n=8,所以n=3,
所以${∫}_{0}^{1}$xndx=${∫}_{0}^{1}$x3dx=$\frac{1}{4}{x}^{4}{|}_{0}^{1}=\frac{1}{4}$;
故选:B.
点评 本题考查了二项展开式的项的系数以及定积分的计算;关键是利用赋值法求出n值.
练习册系列答案
相关题目
11.不等式x-$\frac{4}{x-1}$<1的解集是( )
A. | (-∞,-1)∪(3,+∞) | B. | (-1,1)∪(3,+∞) | C. | (-∞,-1)∪(1,3) | D. | (-1,3) |
15.在等比数列{an}中,a1+a2=72,a3+a4=18,那么a4+a5=( )
A. | 6 | B. | 9 | C. | ±6 | D. | ±9 |
13.某地对50人进行运动与性别是否有关测试,其中20名男性中有15名喜欢运动,30名女性中10名喜欢运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)判断喜欢运动是否与性别有关?
参考数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)判断喜欢运动是否与性别有关?
参考数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
P(Χ2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |