题目内容
1.已知在锐角△ABC中,已知∠B=$\frac{π}{3}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,则$\overrightarrow{AB}•\overrightarrow{AC}$的取值范围是(0,12).分析 以B为原点,BA所在直线为x轴建立坐标系,得到C的坐标,找出三角形为锐角三角形的A的位置,得到所求范围.
解答 解:以B为原点,BA所在直线为x轴建立坐标系,
因为∠B=$\frac{π}{3}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|=2,所以C(1,$\sqrt{3}$),设A(x,0)
因为△ABC是锐角三角形,所以A+C=120°,∴30°<A<90°,即A在如图的线段DE上(不与D,E重合),所以1<x<4,
则$\overrightarrow{AB}•\overrightarrow{AC}$=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,所以$\overrightarrow{AB}•\overrightarrow{AC}$的范围为(0,12).
故答案为:(0,12).
点评 本题考查了向量的几何意义以及利用坐标法求数量积范围;属于中档题.
练习册系列答案
相关题目
15.若直线y=kx+3与直线y=$\frac{1}{k}$x-5的交点在直线y=x上,则k的值为( )
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{5}{3}$ | D. | $\frac{5}{3}$ |
6.已知函数f(x)=$\left\{\begin{array}{l}{x{\;}^{2},(x≤0)}\\{\sqrt{2-x{\;}^{2}},(x>0)}\end{array}\right.$则${∫}_{-1}^{\sqrt{2}}$f(x)dx=( )
A. | $\frac{π}{2}$-$\frac{1}{3}$ | B. | $\frac{π}{2}$+$\frac{1}{3}$ | C. | $\frac{π}{4}$+$\frac{1}{3}$ | D. | $\frac{π}{4}$-$\frac{1}{3}$ |