题目内容
16.复数$z=\frac{2-3i}{1+i}$的虚部是$-\frac{5}{2}$.分析 利用复数代数形式的乘除运算化简得答案.
解答 解:$z=\frac{2-3i}{1+i}$=$\frac{(2-3i)(1-i)}{(1+i)(1-i)}=\frac{-1-5i}{2}=-\frac{1}{2}-\frac{5}{2}i$.
∴复数$z=\frac{2-3i}{1+i}$的虚部是-$\frac{5}{2}$.
故答案为:$-\frac{5}{2}$.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
4.在△ABC中,a=4,A=30°,B=60°,则b等于( )
A. | $4\sqrt{3}$ | B. | 6 | C. | $\sqrt{3}$ | D. | 9 |
11.设复数z1=1+i,z2=2+ai,若$\frac{z_1}{z_2}$为纯虚数,则实数a=( )
A. | -2 | B. | 2 | C. | -1 | D. | 1 |
8.z=$\frac{{{{({-1+\sqrt{3}i})}^3}}}{2^3}+\frac{{-1+\sqrt{2}i}}{{\sqrt{2}+i}}$,则|z|=( )
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 1 |
6.函数f(x)=cos4x,x∈R是( )
A. | 最小正周期是π的偶函数 | B. | 最小正周期是π的奇函数 | ||
C. | 最小正周期是$\frac{π}{2}$的偶函数 | D. | 最小正周期是$\frac{π}{2}$的奇函数 |