题目内容
【题目】在四棱锥中,是等边三角形,点在棱上,平面平面.
(1)求证:平面平面;
(2)若,求直线与平面所成角的正弦值的最大值;
(3)设直线与平面相交于点,若,求的值.
【答案】(1)证明见解析(2)(3)
【解析】
(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;
(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;
(3)设,,则,求得,,即可求得点的坐标,再由与平面的法向量垂直,进而求解.
(1)证明:取中点为,连接,
因为是等边三角形,所以,
因为且相交于,所以平面,所以,
因为,所以,
因为,在平面内,所以,
所以.
(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,则,,,,
因为在棱上,可设,
所以,
设平面的法向量为,因为,
所以,即,令,可得,即,
设直线与平面所成角为,所以,
可知当时,取最大值.
(3)设,则有,得,
设,那么,所以,
所以.
因为,
,
所以.
又因为,所以,
,设平面的法向量为,
则,即,,可得,即
因为在平面内,所以,所以,
所以,即,
所以或者(舍),即.
练习册系列答案
相关题目
【题目】已知函数的定义域为,部分对应值如下表:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
的导函数的图象如图所示,关于的命题正确的是( )
A.函数是周期函数
B.函数在上是减函数
C.函数的零点个数可能为0,1,2,3,4
D.当时,函数有 4个零点