题目内容
【题目】已知函数,.
(1)若曲线在点处的切线方程为,求,;
(2)当时,,求实数的取值范围.
【答案】(1);(2)
【解析】
(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;
(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.
(1)由题得,
因为在点与相切
所以,∴
(2)由得,令,只需
,设(),
当时,,在时为增函数,所以,舍;
当时,开口向上,对称轴为,,所以在时为增函数,
所以,舍;
当时,二次函数开口向下,且,
所以在时有一个零点,在时,在时,
①当即时,在小于零,
所以在时为减函数,所以,符合题意;
②当即时,在大于零,
所以在时为增函数,所以,舍.
综上所述:实数的取值范围为
练习册系列答案
相关题目