题目内容

【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,.设点的轨迹为,下列结论正确的是( )

A. 的方程为

B. 轴上存在异于的两定点,使得

C. 三点不共线时,射线的平分线

D. 上存在点,使得

【答案】BC

【解析】

通过设出点P坐标,利用即可得到轨迹方程,找出两点即可判断B的正误,设出点坐标,利用与圆的方程表达式解出就存在,解不出就不存在.

设点,则,化简整理得,即,故A错误;当时,,故B正确;对于C选项,,要证PO为角平分线,只需证明,即证,化简整理即证,设,则

,则证

,故C正确;对于D选项,设,可得,整理得,而点M在圆上,故满足,联立解得无实数解,于是D错误.故答案为BC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网