题目内容
【题目】在平面直角坐标系中,点,分别为椭圆C:的左右焦点,椭圆的离心率为,点在椭圆C上,不在轴上的动点P与动点Q关于原点O对称,且四边形的周长为.
(1)求动点P的轨迹方程;
(2)在动点P的轨迹上有两个不同的点M,N,线段MN的中点为G,已知点在圆上,求的最大值,并判断此时ΔOMN的形状.
【答案】(1);(2)最大值为,ΔOMN是直角三角形
【解析】
(1)题中先求得的坐标,即,可利用离心率和点在椭圆上 结合解得,动点P与动点Q关于原点O对称,且四边形的周长为.可得点轨迹是椭圆,且长轴长已知,焦距已知,只要再求得短半轴长即得,注意方程中;
(2)由用点都在椭圆上可求得,用两点间距离公式表示出,代入和,并利用基本不等式可求得最大值.根据取得最大值时的条件得是直角三角形.
(1)设点,的坐标分别为,
由已知可知,又,所以可得,则,
连接PQ,因为,OP=OQ,所以四边形为平行四边形.
因为四边形的周长为,所以,
所以动点P的轨迹是以点,分别为左、右焦点,长轴长为的椭圆(除去左、右顶点),可得动点P的轨迹方程为
(2)因为,,,所以,
所以
.
当且仅当,即时,等号成立,
所以的最大值为,此时,即,即是直角三角形.
【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.
(1)求这200名学生每周阅读时间的样本平均数和中位数(的值精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为,的学生中抽取9名参加座谈会.
(i)你认为9个名额应该怎么分配?并说明理由;
(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?
阅读时间不足8.5小时 | 阅读时间超过8.5小时 | |
理工类专业 | 40 | 60 |
非理工类专业 |
附:().
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<> | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |