题目内容
【题目】函数,当时,恒成立,则的最大值是_____.
【答案】
【解析】
先根据恒成立写出有关a,b的约束条件,再在aob系中画出可行域,由斜率模型可得
.又,令 t,则1≤t≤4,利用y=t在[1,4]上单调递增,即可得出结论.
令g(m)=(3a﹣2)m+b﹣a.
由题意当m∈[0,1]时,0≤f(a)≤1可得
0≤g(0)≤1,
0≤g(1)≤1,
∴0≤b﹣a≤1,0≤2a+b﹣2≤1.
即 a≤b≤1+a①,2≤2a+b≤3 ②.
把(a,b)看作点画出可行域,由斜率模型可看作是原点与(a,b)连线的斜率,由图可得当(a,b)取点A时,原点与(a,b)连线的斜率最大,与b﹣a=0重合时原点与(a,b)连线的斜率最小.
∴14.
又 ,令 t,则1≤t≤4,
∵y=t在[1,4]上单调递增,
∴t=4时,即a,b时,y有最大值是.
则的最大值是
故答案为:
【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:
满意度评分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有人.
(1)求频率分布于直方图中的值,及评分等级不满意的人数;
(2)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.
【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
编号 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投篮成 绩 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的样本数据
编号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性别 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投篮成 绩 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为,求的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
优秀 | 非优秀 | 合计 | |
男 | |||
女 | |||
合计 | 10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)