题目内容
【题目】给出下列命题:
①已知,是正数,且,则;
②命题“,使得”的否定是真命题;
③将化成二进位制数是;
④某同学研究变量,之间的相关关系,并求得回归直线方程,他得出一个结论:与 负相关且,
其中正确的命题的序号是__________(把你认为正确的序号都填上).
【答案】②③④
【解析】
①中作差法即可判断命题为假;
②中完全平方式非负性判断命题为真;
③中熟悉进制规则,详见解析;
④中回归方程的正负相关性即可得出,命题为真.
①中作差法可知:
∵a,b是正数,
∴,可知①错;
②中命题的否定为:“,使得”,
即“,使得”显然为真命题,故②正确;
③中则,∵,故③正确;
④中,∵y与x负相关,
∴所求回归直线方程中前面的系数为负数,符合常理,故④正确.
故答案为:②③④.
练习册系列答案
相关题目
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足时按计算)需再收5元.公司从承揽过的包裹中,随机抽取100件,其重量统计如下:
包裹重量(单位:) | |||||
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司又随机抽取了60天的揽件数,得到频数分布表如下:
揽件数 | |||||
天数 | 6 | 6 | 30 | 12 | 6 |
以记录的60天的揽件数的频率作为各揽件数发生的概率
(1)计算该公司3天中恰有2天揽件数在的概率;
(2)估计该公司对每件包裹收取的快递费的平均值;
(3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员3人,每人每天揽件不超过150件,每人每天工资100元,公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?
(注:同一组中的揽件数以这组数据所在区间中点值作代表)