题目内容
【题目】已知命题,;命题关于的方程有两个相异实数根.
(1)若为真命题,求实数的取值范围;
(2)若为真命题,为假命题,求实数的取值范围.
【答案】(1);(2).
【解析】
试题首先结合对数函数二次函数性质求解命题p,q为真命题时的m的取值范围,(1)中由为真命题可知p假q真,由此解不等式可求得实数的取值范围;(2)中为真命题,为假命题可知两命题一真一假,分两种情况可分别求得m的取值范围
试题解析:令,则在[0,2]上是增函数,
故当时,最小值为,故若为真,则. ……2分
即时,方程有两相异实数根,
∴; ……4分
(1)若为真,则实数满足故,
即实数的取值范围为……8分
(2)若为真命题,为假命题,则一真一假,
若真假,则实数满足即;
若假真,则实数满足即.
综上所述,实数的取值范围为. ……12[来源:学&
【题目】某地区不同身高的未成年男孩的体重平均值如下表:
身高 | 60 | 70 | 80 | 90 | 100 |
体重 | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知与之间存在很强的线性相关性,
(1)据此建立与之间的回归方程;
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高体重为的在校男生的体重是否正常?
参考数据:,,
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,.
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |