ÌâÄ¿ÄÚÈÝ
ÍÖÔ²EµÄÖÐÐÄÔÚÔµãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊe=
£¬¹ýµãC£¨-1£¬0£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒÂú×㣺
=¦Ë
£¨¦Ë¡Ý2£©£®
£¨1£©Èô¦ËΪ³£Êý£¬ÊÔÓÃÖ±ÏßlµÄбÂÊk£¨k¡Ù0£©±íʾÈý½ÇÐÎOABµÄÃæ»ý£»
£¨2£©Èô¦ËΪ³£Êý£¬µ±Èý½ÇÐÎOABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨3£©Èô¦Ë±ä»¯£¬ÇÒ¦Ë=k2+1£¬ÊÔÎÊ£ºÊµÊý¦ËºÍÖ±ÏßlµÄбÂÊk£¨k¡ÊR£©·Ö±ðΪºÎֵʱ£¬ÍÖÔ²EµÄ¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¿²¢Çó³ö´ËʱµÄÍÖÔ²·½³Ì£®
|
CA |
BC |
£¨1£©Èô¦ËΪ³£Êý£¬ÊÔÓÃÖ±ÏßlµÄбÂÊk£¨k¡Ù0£©±íʾÈý½ÇÐÎOABµÄÃæ»ý£»
£¨2£©Èô¦ËΪ³£Êý£¬µ±Èý½ÇÐÎOABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨3£©Èô¦Ë±ä»¯£¬ÇÒ¦Ë=k2+1£¬ÊÔÎÊ£ºÊµÊý¦ËºÍÖ±ÏßlµÄбÂÊk£¨k¡ÊR£©·Ö±ðΪºÎֵʱ£¬ÍÖÔ²EµÄ¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¿²¢Çó³ö´ËʱµÄÍÖÔ²·½³Ì£®
ÉèÍÖÔ²·½³ÌΪ£º
+
=1£¨a£¾b£¾0£©£¬
ÓÉe=
=
¼°a2=b2+c2µÃa2=3b2£¬
¹ÊÍÖÔ²·½³ÌΪx2+3y2=3b2¢Ù
£¨1£©¡ßÖ±ÏßL£ºy=k£¨x+1£©½»ÍÖÔ²ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬
²¢ÇÒ
=¦Ë
£¨¦Ë¡Ý2£©
¡à£¨x1+1£¬y1£©=¦Ë£¨-1-x2£¬-y2£©£¬
¼´
¢Ú
°Ñy=k£¨x+1£©´úÈëÍÖÔ²·½³Ì£¬
µÃ£º£¨3k2+1£©x2+6k2x+3k2-3b2=0£¬ÇÒ¡÷=k2£¨3b2-1£©+b2£¾0£¬
¡àx1+x2=-
¢Ûx1x2=
¢Ü
¡àS¡÷OAB=
|x1-x2|
=
|k||x1-x2|=
|k||x2+1|
ÁªÁ¢¢Ú¡¢¢ÛµÃ£ºx2+1=
¡àS¡÷OAB=
•
(k¡Ù0)
£¨2£©S¡÷OAB=
•
=
•
¡Ü
•
(¦Ë¡Ý2)
µ±ÇÒ½öµ±3|k|=
¼´k=¡À
ʱ£¬S¡÷OABÈ¡µÃ×î´óÖµ£®
´Ëʱx1+x2=-1£¬
ÓÖ¡ßx1+1=-¦Ë£¨x2+1£©£¬
¡àx1=
£¬x2=
£¬´úÈë¢ÜµÃ£º3b2=
¹Ê´ËʱÍÖÔ²µÄ·½³ÌΪx2+3y2=
(¦Ë¡Ý2)
£¨3£©ÓÉ¢Ú£®¢ÛÁªÁ¢µÃ£ºx1=
-1£¬x2=
-1£¬½«x1£®x2´úÈë¢ÜµÃ£º3b2=
+1£¬
ÓÉk2=¦Ë-1
µÃ£º3b2=
+1=
[
+
]+1
Ò×Öª£ºµ±¦Ë¡Ý2ʱ£¬3b2ÊǦ˵ļõº¯Êý£¬
¹Êµ±¦Ë=2ʱ£¬£¨3b2£©max=3£®
¹Êµ±¦Ë=2£¬
k=¡À1ʱ£¬ÍÖÔ²¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¬´ËʱÍÖÔ²·½³ÌΪx2+3y2=3£®
x2 |
a2 |
y2 |
b2 |
ÓÉe=
c |
a |
|
¹ÊÍÖÔ²·½³ÌΪx2+3y2=3b2¢Ù
£¨1£©¡ßÖ±ÏßL£ºy=k£¨x+1£©½»ÍÖÔ²ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬
²¢ÇÒ
CA |
BC |
¡à£¨x1+1£¬y1£©=¦Ë£¨-1-x2£¬-y2£©£¬
¼´
|
°Ñy=k£¨x+1£©´úÈëÍÖÔ²·½³Ì£¬
µÃ£º£¨3k2+1£©x2+6k2x+3k2-3b2=0£¬ÇÒ¡÷=k2£¨3b2-1£©+b2£¾0£¬
¡àx1+x2=-
6k2 |
3k2+1 |
3k2-3b2 |
3k2+1 |
¡àS¡÷OAB=
1 |
2 |
1+k2 |
|k| | ||
|
1 |
2 |
|¦Ë+1| |
2 |
ÁªÁ¢¢Ú¡¢¢ÛµÃ£ºx2+1=
2 |
(1-¦Ë)(3k2+1) |
¡àS¡÷OAB=
¦Ë+1 |
¦Ë-1 |
|k| |
3k2+1 |
£¨2£©S¡÷OAB=
¦Ë+1 |
¦Ë-1 |
|k| |
3k2+1 |
¦Ë+1 |
¦Ë-1 |
1 | ||
3|k|+
|
¦Ë+1 |
¦Ë-1 |
1 | ||
2
|
µ±ÇÒ½öµ±3|k|=
1 |
|k| |
| ||
3 |
´Ëʱx1+x2=-1£¬
ÓÖ¡ßx1+1=-¦Ë£¨x2+1£©£¬
¡àx1=
1 |
¦Ë-1 |
-¦Ë |
¦Ë-1 |
¦Ë2+1 |
(¦Ë-1)2 |
¹Ê´ËʱÍÖÔ²µÄ·½³ÌΪx2+3y2=
¦Ë2+1 |
(¦Ë-1)2 |
£¨3£©ÓÉ¢Ú£®¢ÛÁªÁ¢µÃ£ºx1=
-2¦Ë |
(1-¦Ë)(3k2+1) |
2 |
(1-¦Ë)(3k2+1) |
4¦Ë |
(¦Ë-1)2(3k2+1) |
ÓÉk2=¦Ë-1
µÃ£º3b2=
4¦Ë |
(¦Ë-1)2(3¦Ë-2) |
4 |
3 |
1 |
(¦Ë-1)2 |
2 |
(¦Ë-1)2(3¦Ë-2) |
Ò×Öª£ºµ±¦Ë¡Ý2ʱ£¬3b2ÊǦ˵ļõº¯Êý£¬
¹Êµ±¦Ë=2ʱ£¬£¨3b2£©max=3£®
¹Êµ±¦Ë=2£¬
k=¡À1ʱ£¬ÍÖÔ²¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¬´ËʱÍÖÔ²·½³ÌΪx2+3y2=3£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿