ÌâÄ¿ÄÚÈÝ

ÍÖÔ²EµÄÖÐÐÄÔÚÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊe=
2
3
£¬¹ýµãC£¨-1£¬0£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒÂú×㣺
CA
=¦Ë
BC
£¨¦Ë¡Ý2£©£®
£¨1£©Èô¦ËΪ³£Êý£¬ÊÔÓÃÖ±ÏßlµÄбÂÊk£¨k¡Ù0£©±íʾÈý½ÇÐÎOABµÄÃæ»ý£»
£¨2£©Èô¦ËΪ³£Êý£¬µ±Èý½ÇÐÎOABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨3£©Èô¦Ë±ä»¯£¬ÇÒ¦Ë=k2+1£¬ÊÔÎÊ£ºÊµÊý¦ËºÍÖ±ÏßlµÄбÂÊk£¨k¡ÊR£©·Ö±ðΪºÎֵʱ£¬ÍÖÔ²EµÄ¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¿²¢Çó³ö´ËʱµÄÍÖÔ²·½³Ì£®
ÉèÍÖÔ²·½³ÌΪ£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬
ÓÉe=
c
a
=
2
3
¼°a2=b2+c2µÃa2=3b2£¬
¹ÊÍÖÔ²·½³ÌΪx2+3y2=3b2¢Ù
£¨1£©¡ßÖ±ÏßL£ºy=k£¨x+1£©½»ÍÖÔ²ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬
²¢ÇÒ
CA
=¦Ë
BC
£¨¦Ë¡Ý2£©
¡à£¨x1+1£¬y1£©=¦Ë£¨-1-x2£¬-y2£©£¬
¼´
x1+1=-¦Ë(x2+1)
y1=-¦Ëy2
¢Ú
°Ñy=k£¨x+1£©´úÈëÍÖÔ²·½³Ì£¬
µÃ£º£¨3k2+1£©x2+6k2x+3k2-3b2=0£¬ÇÒ¡÷=k2£¨3b2-1£©+b2£¾0£¬
¡àx1+x2=-
6k2
3k2+1
¢Ûx1x2=
3k2-3b2
3k2+1
¢Ü
¡àS¡÷OAB=
1
2
1+k2
|x1-x2|
|k|
1+k2
=
1
2
|k||x1-x2|=
|¦Ë+1|
2
|k||x2+1|

ÁªÁ¢¢Ú¡¢¢ÛµÃ£ºx2+1=
2
(1-¦Ë)(3k2+1)

¡àS¡÷OAB=
¦Ë+1
¦Ë-1
|k|
3k2+1
(k¡Ù0)

£¨2£©S¡÷OAB=
¦Ë+1
¦Ë-1
|k|
3k2+1
=
¦Ë+1
¦Ë-1
1
3|k|+
1
|k|
¡Ü
¦Ë+1
¦Ë-1
1
2
3
(¦Ë¡Ý2)

µ±ÇÒ½öµ±3|k|=
1
|k|
¼´k=¡À
3
3
ʱ£¬S¡÷OABÈ¡µÃ×î´óÖµ£®
´Ëʱx1+x2=-1£¬
ÓÖ¡ßx1+1=-¦Ë£¨x2+1£©£¬
¡àx1=
1
¦Ë-1
£¬x2=
-¦Ë
¦Ë-1
£¬´úÈë¢ÜµÃ£º3b2=
¦Ë2+1
(¦Ë-1)2

¹Ê´ËʱÍÖÔ²µÄ·½³ÌΪx2+3y2=
¦Ë2+1
(¦Ë-1)2
(¦Ë¡Ý2)

£¨3£©ÓÉ¢Ú£®¢ÛÁªÁ¢µÃ£ºx1=
-2¦Ë
(1-¦Ë)(3k2+1)
-1
£¬x2=
2
(1-¦Ë)(3k2+1)
-1
£¬½«x1£®x2´úÈë¢ÜµÃ£º3b2=
4¦Ë
(¦Ë-1)2(3k2+1)
+1
£¬
ÓÉk2=¦Ë-1
µÃ£º3b2=
4¦Ë
(¦Ë-1)2(3¦Ë-2)
+1=
4
3
[
1
(¦Ë-1)2
+
2
(¦Ë-1)2(3¦Ë-2)
]+1

Ò×Öª£ºµ±¦Ë¡Ý2ʱ£¬3b2ÊǦ˵ļõº¯Êý£¬
¹Êµ±¦Ë=2ʱ£¬£¨3b2£©max=3£®
¹Êµ±¦Ë=2£¬
k=¡À1ʱ£¬ÍÖÔ²¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¬´ËʱÍÖÔ²·½³ÌΪx2+3y2=3£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø