题目内容

设双曲线方程
x2
a2
-
y2
b2
=1(b>a>0)
的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c

(1)求双曲线的离心率;
(2)经过该双曲线的右焦点且斜率为2的直线m被双曲线截得的弦长为15,求双曲线的方程.
(1)b>a⇒b2a2c2-a2a2c2>2a2e2>2⇒e>
2
…(2分)
直线l的方程为
x
a
+
y
b
=1
,即bx+ay-ab=0,由原点到直线l的距离为
3
4
c
d=
ab
a2+b2
=
ab
c
=
3
4
c
,即16a2(c2-a2)=3c4,…(4分)
两边同时除以a4得16(e2-1)=3e4,整理得3e4-16e2+16=0,解得e2=
4
3
或4
…(5分)
e>
2
,故双曲线的离心率为e=2…(6分)
(2)由(1)知道e=2即c=2a,所以设双曲线的方程为
x2
a2
-
y2
3a2
=1

又由题意得直线m方程为y=2(x-2a),代入双曲线方程得…(7分)
3x2-4(x-2a)2=3a2,整理得x2-16ax+19a2=0…(8分)
记直线m与双曲线的交点为A(x1,y1),B(x2,y2),则有x1+x2=16a,x1x2=19a2…(9分)∴|AB|=
1+k2
|x1-x2|=
(1+k2)[(x1+x2)2-4x1x2]
=
5(256a2-76a2)
=30a=15
a=
1
2
…(11分)
∴所求双曲线方程为
x2
1
4
-
y2
3
4
=1
…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网