题目内容
【题目】定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.
(1)为“﹣数列”中的任意三项,则使得的取法有多少种?
(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.
【答案】(1)16;(2)115.
【解析】
(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.
(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;
当时求得,再根据换元根据整除的方法求解满足的正整数对即可.
解:(1)三个数乘积为有两种情况:“”,“”,
其中“”共有:种,
“”共有:种,
利用分类计数原理得:
为“﹣数列”中的任意三项,
则使得的取法有:种.
(2)与(1)同理,“”共有种,
“”共有种,
而在“﹣数列”中任取三项共有种,
根据古典概型有:,
再根据组合数的计算公式能得到:
,
时,应满足,
,共个,
时,
应满足,
视为常数,可解得,
,
根据可知,,
,
,
根据可知,,(否则),
下设,
则由于为正整数知必为正整数,
,
,
化简上式关系式可以知道:,
均为偶数,
设,
则
,
由于中必存在偶数,
只需中存在数为的倍数即可,
,
.
检验: 符合题意,
共有个,
综上所述:共有个数对符合题意.
练习册系列答案
相关题目