题目内容
【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)如图,过定点的直线交椭圆于两点,连接并延长交于,求证:.
【答案】(1)(2)证明过程详见解析
【解析】
(1)设出圆的方程,利用圆心到直线的距离等于半径,求出b,利用离心率求出a,即可求出椭圆C的标准方程;
(2)依题意可知直线斜率存在,设方程为,代入整理得
, 与椭圆有两个交点,.
设,,直线,的斜率分别为,,利用韦达定理证明
即可.
解:(1)依题意可设圆方程为,
圆与直线相切,.,
由解得,
椭圆的方程为.
(2)依题意可知直线斜率存在,设方程为,代入整理得
,
与椭圆有两个交点,,即.
设,,直线,的斜率分别为,
则,.
,
即.
练习册系列答案
相关题目
【题目】是指悬浮在空气中的空气动力学当量直径小于或等于微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准,日均值在微克/立方米以下,空气质量为一级;在微克应立方米微克立方米之间,空气质量为二级:在微克/立方米以上,空气质量为超标.从某市年全年每天的监测数据中随机地抽取天的数据作为样本,监测值频数如下表:
日均值 (微克/立方米) | ||||||
频数(天) |
(1)从这天的日均值监测数据中,随机抽出天,求恰有天空气质量达到一级的概率;
(2)从这天的数据中任取天数据,记表示抽到监测数据超标的天数,求的分布列.