题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)若,设,证明:,,使.
【答案】(1)见解析;(2)证明见解析.
【解析】
(1),分,,,四种情况讨论即可;
(2)问题转化为,利用导数找到与即可证明.
(1).
①当时,恒成立,
当时,;
当时,,所以,
在上是减函数,在上是增函数.
②当时,,.
当时,;
当时,;
当时,,所以,
在上是减函数,在上是增函数,
在上是减函数.
③当时,,
则在上是减函数.
④当时,,
当时,;
当时,;
当时,,
所以,在上是减函数,
在上是增函数,在上是减函数.
(2)由题意,得.
由(1)知,当,时,,
.
令,,
故在上是减函数,有,
所以,从而.
,,
则,
令,显然在上是增函数,
且,,
所以存在使,
且在上是减函数,
在上是增函数,
,
所以,
所以,命题成立.
【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:
质量指标检测分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班组生产的产品件数 | 7 | 18 | 40 | 29 | 6 |
乙班组生产的产品件数 | 8 | 12 | 40 | 32 | 8 |
(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;
(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?
甲班组 | 乙班组 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |