题目内容
【题目】已知与相交于点,线段是圆的一条动弦,且,则的最小值是___________.
【答案】
【解析】
由两直线方程可知两直线垂直,且分别过定点(3,1)、(1,3),所以点P的轨迹为以两定点连线段为直径的圆,方程为(x﹣2)2+(y﹣2)2=2。因为要求的最小值,可作垂直线段CD⊥AB,根据向量的运算可得,,根据条件求得CD的长度为1,所以点D的轨迹为。根据两圆方程可知点P的轨迹与点D的轨迹外离,故的最小值为两圆的圆心距减去两圆的半径。
∵l1:mx﹣y﹣3m+1=0与l2:x+my﹣3m﹣1=0,
∴l1⊥l2,l1过定点(3,1),l2过定点(1,3),
∴点P的轨迹方程为圆(x﹣2)2+(y﹣2)2=2,
作垂直线段CD⊥AB,CD==1,
所以点D的轨迹为,
则,
因为圆P和圆D的圆心距为,
所以两圆外离,
所以|PD|最小值为,
所以的最小值为4﹣2.
故答案为:4﹣2.
练习册系列答案
相关题目