题目内容
14.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.
分析 (1)分类讨论,利用待定系数法给出切线方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;
(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.
解答 解:( 1)将圆C配方得(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得$\frac{|-k-2|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,即k=2±$\sqrt{6}$,
从而切线方程为y=(2±$\sqrt{6}$)x.…(3分)
②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,
由直线与圆相切得x+y+1=0,或x+y-3=0.∴所求切线的方程为y=(2±$\sqrt{6}$)x
x+y+1=0或x+y-3=0.…(6分)
(2)由|PO|=|PM|得,x12+y12=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0..…(8分)
即点P在直线l:2x-4y+3=0上,|PM|取最小值时即
|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.…(10分)
解方程组$\left\{\begin{array}{l}{2x+y=0}\\{2x-4y+3=0}\end{array}\right.$得P点坐标为(-$\frac{3}{10}$,$\frac{3}{5}$).…(12分)
点评 本题重点考查了直线与圆的位置关系,切线长问题一般会考虑到点到圆心距、切线长、半径满足勾股定理列方程;弦长问题一般会利用垂径定理求解.
练习册系列答案
相关题目
5.已知$\frac{{2{{sin}^2}θ+sin2θ}}{1+tanθ}=k,0<θ<\frac{π}{4}$,则$sin(θ-\frac{π}{4})$的值( )
A. | 随着k的增大而增大 | |
B. | 有时随着k的增大而增大,有时随着k的增大而减小 | |
C. | 随着k的增大而减小 | |
D. | 是一个与k无关的常数 |
2.已知tanθ=3,则$\frac{3sinθ+cosθ}{cosθ-3sinθ}$=( )
A. | $\frac{4}{5}$ | B. | $\frac{5}{4}$ | C. | -$\frac{4}{5}$ | D. | -$\frac{5}{4}$ |
19.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?
(Ⅳ)从[11.35,11.45)∪[11.55,11.65)中抽取两个产品,直径分别记作为x,y,求|x-y|<0.1的概率
分组 | 频数累计 | 频数 | 频率 |
[10.75,10.85) | 6 | 6 | 0.06 |
[10.85,10.95) | 15 | 9 | 0.09 |
[10.95,11.05) | 30 | 15 | 0.15 |
[11.05,11.15) | 48 | 18 | 0.18 |
[11.15,11.25) | |||
[11.25,11.35) | 84 | 12 | 0.12 |
[11.35,11.45) | 92 | 8 | 0.08 |
[11.45,11.55) | 98 | 6 | 0.06 |
[11.55,11.65) | 100 | 2 | 0.02 |
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?
(Ⅳ)从[11.35,11.45)∪[11.55,11.65)中抽取两个产品,直径分别记作为x,y,求|x-y|<0.1的概率
3.若函数f(x)(x∈R)对任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则函数f(x)是( )
A. | 增函数 | B. | 减函数 | C. | 奇函数 | D. | 偶函数 |