题目内容
【题目】设集合,.
(1)若,求实数的值;
(2)若,求实数的范围.
【答案】(1);(2)或
【解析】
(1)∵∴AB,又B中最多有两个元素,∴A=B,从而得到实数的值;(2)求出集合A、B的元素,利用B是A的子集,即可求出实数a的范围.
(1)∵∴AB,又B中最多有两个元素,
∴A=B,
∴x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,
故a=1;
(2)∵A={x|x2+4x=0,x∈R}
∴A={0,﹣4},
∵B={x|x2+2(a+1)x+a2﹣1=0},且BA.
故①B=时,△=4(a+1)2﹣4(a2﹣1)<0,即a<﹣1,满足BA;
②B≠时,当a=﹣1,此时B={0},满足BA;
当a>﹣1时,x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,
故a=1;
综上所述a=1或a≤﹣1;
练习册系列答案
相关题目
【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:
不喜欢西班牙队 | 喜欢西班牙队 | 总计 | |
40岁以上 | 50 | ||
不高于40岁 | 15 | 35 | 50 |
总计 | 100 |
已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.
参考公式与临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |