题目内容
20.已知圆C与直线l:x+2y-11=0相切,圆心C在直线x-y=0上,且x轴被圆C所截得的弦长为2,求圆C的方程.分析 设圆心(t,t),由题意可得r=$\frac{|t+2t-11|}{\sqrt{1+4}}$=$\frac{|3t-11|}{\sqrt{5}}$,求出圆心到直线的距离d,利用x轴被圆C所截得的弦长为2,可得r=$\sqrt{{t}^{2}+1}$,从而得到圆心坐标和半径,由此求出圆的方程.
解答 解:设圆心(t,t),则由圆C与直线l:x+2y-11=0相切,可得r=$\frac{|t+2t-11|}{\sqrt{1+4}}$=$\frac{|3t-11|}{\sqrt{5}}$.
∵x轴被圆C所截得的弦长为2,
∴r=$\sqrt{{t}^{2}+1}$,
∴$\frac{|3t-11|}{\sqrt{5}}$=$\sqrt{{t}^{2}+1}$,
∴t=2或$\frac{29}{2}$.
故圆C的方程为 (x-2)2+(y-2)2=5或(x-$\frac{29}{2}$)2+(y-$\frac{29}{2}$)2=$\frac{845}{4}$.
点评 本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于中档题.
练习册系列答案
相关题目
10.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{10}$ |
5.观察下列各式:若a1+b1=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a7+b7=( )
A. | 18 | B. | 29 | C. | 47 | D. | 15 |