题目内容
9.圆x2+y2+2x-2y+1=0关于直线x-y+3=0对称圆的方程为( )A. | (x-1)2+(y+1)2=1 | B. | (x+2)2+(y-2)2=1 | C. | (x+1)2+(y-1)2=1 | D. | (x-2)2+(y+2)2=1 |
分析 先求出圆x2+y2+2x-2y+1=0的圆心和半径;再利用两点关于已知直线对称所具有的结论,求出所求圆的圆心坐标即可求出结论.
解答 解:∵圆x2+y2+2x-2y+1=0转化为标准方程为(x+1)2+(y-1)2=1,
所以其圆心为:(-1,1),r=1,
设(-1,1)关于直线x-y+3=0对称点为:(a,b)
则有$\left\{\begin{array}{l}{\frac{a-1}{2}-\frac{1+b}{2}+3=0}\\{\frac{b-1}{a+1}×1=-1}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=-2}\\{b=2}\end{array}\right.$.
故所求圆的圆心为:(-2,2).半径为1.
所以所求圆的方程为:(x+2)2+(y-2)2=1
故选:B.
点评 本题是基础题,考查对称圆的方程问题,重点在于求出对称圆的圆心坐标和半径,本题考查函数和方程的思想,注意垂直条件的应用.
练习册系列答案
相关题目
19.已知两直线2x-y+1=0与3x+ay=0平行,则a=( )
A. | $-\frac{3}{2}$ | B. | -3 | C. | -4 | D. | -5 |
4.已知集合A={0,1,2},集合B={-1,0,1},则集合A∩B=( )
A. | {-1,0,1,2} | B. | {0,1} | C. | {-1,6} | D. | ∅ |
18.设X为随机变量,X~B (n,$\frac{1}{3}$),若随机变量X的数学期望E(X)=2,则P(X=2)等于( )
A. | $\frac{80}{243}$ | B. | $\frac{13}{243}$ | C. | $\frac{4}{243}$ | D. | $\frac{13}{16}$ |