题目内容

9.圆x2+y2+2x-2y+1=0关于直线x-y+3=0对称圆的方程为(  )
A.(x-1)2+(y+1)2=1B.(x+2)2+(y-2)2=1C.(x+1)2+(y-1)2=1D.(x-2)2+(y+2)2=1

分析 先求出圆x2+y2+2x-2y+1=0的圆心和半径;再利用两点关于已知直线对称所具有的结论,求出所求圆的圆心坐标即可求出结论.

解答 解:∵圆x2+y2+2x-2y+1=0转化为标准方程为(x+1)2+(y-1)2=1,
所以其圆心为:(-1,1),r=1,
设(-1,1)关于直线x-y+3=0对称点为:(a,b)
则有$\left\{\begin{array}{l}{\frac{a-1}{2}-\frac{1+b}{2}+3=0}\\{\frac{b-1}{a+1}×1=-1}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=-2}\\{b=2}\end{array}\right.$.
故所求圆的圆心为:(-2,2).半径为1.
所以所求圆的方程为:(x+2)2+(y-2)2=1
故选:B.

点评 本题是基础题,考查对称圆的方程问题,重点在于求出对称圆的圆心坐标和半径,本题考查函数和方程的思想,注意垂直条件的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网