题目内容
3.已知定义域为R的奇函数y=f(x)的导函数y=f′(x).当x≠0时,f′(x)+$\frac{f(x)}{x}$>0.若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a、b、c的大小关系是( )A. | a<b<C | B. | b<c<a | C. | c<a<b | D. | a<c<b |
分析 根据式子得出F(x)=xf(x)为R上的偶函数,利用f′(x)+$\frac{f(x)}{x}$>0.
当x>0时,x•f′(x)+f(x)>0,
当x<0时,x•f′(x)+f(x)<0,判断单调性即可证明a,b,c 的大小.
解答 解:∵定义域为R的奇函数y=f(x),
∴F(x)=xf(x)为R上的偶函数,
F′(x)=f(x)+xf′(x)
∵当x≠0时,f′(x)+$\frac{f(x)}{x}$>0.
∴当x>0时,x•f′(x)+f(x)>0,
当x<0时,x•f′(x)+f(x)<0,
即F(x)在(0,+∞)单调递增,在(-∞,0)单调递减.
F($\frac{1}{2}$)=a=$\frac{1}{2}$f($\frac{1}{2}$)=F(ln$\sqrt{e}$),F(-2)=b=-2f(-2)=F(2),F(ln$\frac{1}{2}$)=c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$)=F(ln2),
∵ln$\sqrt{e}$<ln2<2,
∴F(ln$\sqrt{e}$)<F(ln2)<F(2).
即a<c<b
故选:D
点评 本题考查了导数在函数单调性的运用,根据给出的式子,得出需要的函数,运用导数判断即可,属于中档题.
练习册系列答案
相关题目
14.设a=log53,b=log73,c=log35,则a,b,c的大小关系是( )
A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
15.已知命题p:?x∈R,2x>x2;命题q:?x(-2,+∞),使得(x+1)•ex≤1,则下列命题中为真命题的是( )
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
12.如图,网格上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该组合体的体积为( )
A. | 12π+4+4$\sqrt{3}$ | B. | 12π+4$\sqrt{3}$ | C. | 4π+8 | D. | 4π+$\frac{8}{3}$ |