题目内容
13.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)离心率为$\frac{{2\sqrt{3}}}{3}$,F1(-2,0)、F2(2,0)为其两个焦点,点M是双曲线上一点,且∠F1MF2=60°,则△F1MF2的面积为$\sqrt{3}$.分析 先求出c,a,再设出|MF1|=m,|MF2|=n,利用双曲线的定义以及余弦定理列出关系式,求出mn的值,最后求解三角形的面积.
解答 解:∵双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)离心率为$\frac{{2\sqrt{3}}}{3}$,F1(-2,0)、F2(2,0)为其两个焦点,
∴c=2,a=$\sqrt{3}$,
设|MF1|=m,|MF2|=n,
∵点M是双曲线上一点,且∠F1MF2=60°,
∴|m-n|=2$\sqrt{3}$①,m2+n2-2mncos60°=16②,
由②-①2得mn=4
∴△F1MF2的面积S=$\frac{1}{2}$mnsin60°=$\sqrt{3}$,
故答案为:$\sqrt{3}$
点评 本题考查双曲线的简单性质,双曲线的定义以及余弦定理的应用,考查计算能力.
练习册系列答案
相关题目
4.在复平面内,复数$\frac{2+i}{1-i}$(i是虚数单位)对应的点位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.已知某路口最高限速50km/h,电子监控测得连续6辆汽车的速度如图的茎叶图(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为( )
A. | $\frac{4}{15}$ | B. | $\frac{2}{5}$ | C. | $\frac{8}{15}$ | D. | $\frac{3}{5}$ |
18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\sqrt{5}$,则其渐近线方程为( )
A. | y=±2x | B. | y=$±\sqrt{2}x$ | C. | y=$±\frac{1}{2}x$ | D. | y=$±\frac{{\sqrt{2}}}{2}x$ |