题目内容
【题目】判断下列函数的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
【答案】(1)既不是奇函数又不是偶函数;(2)既不是奇函数又不是偶函数;(3)奇函数;(4)奇函数.
【解析】
根据函数的奇偶性的定义,结合函数的解析式,逐个判定,即可求解.
(1)函数f(x)=x+1的定义域为实数集R,关于原点对称.
因为f(-x)=-x+1=-(x-1),-f(x)=-(x+1),即f(-x)≠-f(x),f(-x)≠f(x),
所以函数f(x)=x+1既不是奇函数又不是偶函数.
(2)因为函数的定义域不关于原点对称,即存在-4∈[-4,4),而4[-4,4),
所以函数f(x)=x3+3x,x∈[-4,4)既不是奇函数又不是偶函数.
(3)函数f(x)=|x-2|-|x+2|的定义域为实数集R,关于原点对称.
因为f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2|=-(|x-2|-|x+2|)=-f(x),
所以函数f(x)=|x-2|-|x+2|是奇函数.
(4)函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.
当x>0时,-x<0,f(-x)=- (-x)2-1=-(x2+1)=-f(x);
当x<0时,-x>0,f(-x)= (-x)2+1=x2+1=-(-x2-1)=-f(x).
综上可知,函数f(x)=是奇函数.
练习册系列答案
相关题目
【题目】某学校调查了20个班中有网上购物经历的人数,得到了如图所示的茎叶图,以为分组,作出这组数的频率分布直方图,并说明频率分布直方图与茎叶图之间的关系.
0 1 2 3 | 7 3 7 6 4 4 3 0 7 5 5 4 3 2 0 8 5 4 3 0 |