题目内容
【题目】已知函数, .
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;
(Ⅲ)若恒成立,求的最大值.
【答案】(1)(2)
【解析】试题分析:(1)先明确函数定义域,再求函数导数,根据导函数符号确定单调区间,(2)由导数几何意义得切线斜率为,则得, .即得(3)不等式恒成立问题,一般转化为对应函数最值问题:先利用导数研究函数最值: 当时, 在上单调递增. 仅当时满足条件,此时;当时, 先减后增, ,再变量分离转化为,最后利用导数研究函数
最值,可得的最大值.
试题解析:解:(Ⅰ) ,则.
令得,所以在上单调递增.
令得,所以在上单调递减.
(Ⅱ)因为,所以,所以的方程为.
依题意, , .
于是与抛物线切于点,
由得.
所以
(Ⅲ)设,则恒成立.
易得
(1)当时,
因为,所以此时在上单调递增.
①若,则当时满足条件,此时;
②若,取且
此时,所以不恒成立.
不满足条件;
(2)当时,
令,得由,得;
由,得
所以在上单调递减,在上单调递增.
要使得“恒成立”,必须有
“当时, ”成立.
所以.则
令则
令,得由,得;
由,得所以在上单调递增,在上单调递减,
所以,当时,
从而,当时, 的最大值为.
综上, 的最大值为.
【题目】春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
做不到“光盘” | 能做到“光盘” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”