题目内容
【题目】已知正方体ABCD-A1B1C1D1的棱长为4,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______.
【答案】2
【解析】
设平面DA1E与直线B1C1交于点F,连接EF,则F为B1C1的中点.分别取B1B、BC的中点N、O,连接AN、ON、AO,可证出平面A1DE∥平面ANO,据此确定点M的轨迹进一步求解其长度即可.
设平面DA1E与直线B1C1交于点F,连接EF,则F为B1C1的中点.
分别取B1B、BC的中点N、O,连接AN、ON、AO,
则∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE内的相交直线,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直线NO平面A1DE,
∴M的轨迹被正方形BCC1B1截得的线段是线段NO.
∴M的轨迹被正方形BCC1B1截得的线段长NO=2.
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )
【答案】(1);(2)见解析
【解析】试题分析:(1)甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. 求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,由此可求出这100天中甲方案的日薪平均数及方差:同理可求出这100天中乙两种方案的日薪平均数及方差,
②不同的角度可以有不同的答案
试题解析:((1)甲方案中派送员日薪(单位:元)与送货单数的函数关系式为: ,
乙方案中派送员日薪(单位:元)与送单数的函数关系式为:
,
(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则
,
,
乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则
,
②、答案一:
由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.
答案二:
由以上的计算结果可以看出, ,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.
【题型】解答题
【结束】
20
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.