题目内容
【题目】在极坐标系中,曲线,曲线,点,以极点为原点,极轴为轴正半轴建立直角坐标系.
(1)求曲线和的直角坐标方程;
(2)过点的直线交于点,交于点,若,求的最大值.
【答案】(1), ;(2)
【解析】试题分析:(1)第(1)问,利用极坐标化直角坐标的公式解答 .(2)第(2)问,
先把直线的参数方程代入曲线C1的直角坐标方程,利用韦达定理求出,再求出,最后代入,求出的最大值.
试题解析:
(1)曲线C1的直角坐标方程为:x2+y2-2y=0;
曲线C2的直角坐标方程为:x=3.
(2)P的直角坐标为(-1,0),设直线l的倾斜角为α,(0<α<),
则直线l的参数方程为: , (t为参数,0<α<)
代入C1的直角坐标方程整理得,
t2-2(sinα+cosα)t+1=0,
t1+t2=2(sinα+cosα)
直线l的参数方程与x=3联立解得,t3=,
由t的几何意义可知,
|PA|+|PB|=2(sinα+cosα)=λ|PQ|=,整理得,
4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=sin(2α+)+1,
由0<α<, <2α+<,
所以,当2α+=,即α=时,λ有最大值.
【题目】为了研究黏虫孵化的平均温度(单位: )与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:
组号 | 1 | 2 | 3 | 4 | 5 | 6 |
平均温度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天数 | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:
经计算得,
(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)
(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1)
,.