题目内容
如图所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一点O为圆心作⊙O与AB相切于E,与AC相切于C,又⊙O与BC的另一个交点为D,则线段BD的长为
A.1 | B. | C. | D. |
C
⊙O与AC相切于C,则∠ACB=90°,又AC=4,BC=3,∴AB=5,连接OE,且设⊙O的半径为R,则由△OEB∽△ACB,
∴OB==R,
∴BC=OC+OB=R+R=R=3,
∴R=,∴BD=BC-2R=3-=.
∴OB==R,
∴BC=OC+OB=R+R=R=3,
∴R=,∴BD=BC-2R=3-=.
练习册系列答案
相关题目