题目内容
设,则AB的中点M与C的距离为_ ▲ .
4
解析
命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。用符号表示为
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF 平面ABCD,BF=3,G、H分别是CE和CF的中点.(Ⅰ)求证:AF//平面BDGH; (Ⅱ)求
如图,在斜三棱柱中,侧面,,,底面是边长为的正三角形,其重心为点,是线段上一点,且.(1)求证:侧面;(2)求平面与底面所成锐二面角的正切值.
正方形AB1C1D的边长为2, E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示),M为矩形AEFD内一点,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值为.那么点M到直线EF的距离为__________.
.体积为的球内有一个内接正三棱锥,球心恰好在底面正△内,一个动点从点出发沿球面运动,经过其余三点后返回,则经过的最短路程为__________
棱长为1的正方体和它的外接球与一个平面相交得到的截面是一个圆及它的内接正三角形,那么球心到截面的距离等于 ▲ .
已知空间四边形,、分别是、中点,,,,则与所成的角的大小为_________
若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为 .