题目内容
【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
【答案】
(1)解:将2×2列联表中的数据代入公式计算,得
K2= = = ≈4.762.
由于4.762>3.841,所以有95%的把握认为“男生和女生在喜欢数学方面有差异”
(2)解:从5名女生中任取3人的一切可能结果所组成的基本事件空间:
Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),
(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},
其中ai表示喜欢数学的学生,i=1,2,bj表示不喜欢数学的学生,j=1,2,3.
Ω由10个基本事件组成,且这些基本事件的出现是等可能的.
用A表示“3人中至多有1人喜欢数学”这一事件,
则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),
(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
事件A由7个基本事件组成,因而P(A)=
【解析】(1)将2×2列联表中的数据代入公式计算即可;(2)分别求出所有的基本事件以及满足条件的基本事件,从而求出满足条件的事件的概率即可.