题目内容
【题目】设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0
【答案】A
【解析】解答:根据|PA|=|PB|得到点P一定在线段AB的垂直平分线上,根据y=x+1求出点A的坐标为(-1,0),由P的横坐标是2代入y=x+1求得纵坐标为3,则P(2,3),又因为Q为A与B的中点,所以得到B(5,0),所以直线PB的方程为: ,化简后为x+y-5=0,故选A. 分析:本题主要考查了两点间距离公式的应用,解决问题的关键是根据所给条件进行发现得到P一定在线段AB的垂直平分线上,然后根据所给条件求得B点坐标,写出直线方程即可.
【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,网购成了大众购物的一个重要组成部分,可人们在开心购物的同时,假冒伪劣产品也在各大购物网站频频出现,为了让顾客能够在网上买到货真价实的好东西,各大购物平台也推出了对商品和服务的评价体系,现从某购物网站的评价系统中选出100次成功的交易,并对其评价进行统计,对商品的好评率为 ,对服务的好评率为 ,其中对商品和服务都做出好评的交易为30次.
(1)列出关于商品和服务评价的2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这100次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |