题目内容
【题目】下列判断错误的是( )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”
C.“若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题
【答案】D
【解析】解:由am2<bm2 , 两边同时乘以 得a<b,反之,由a<b,不一定有am2<bm2 , 如m2=0.
∴“am2<bm2”是”a<b”的充分不必要条件.故A正确;
命题“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”.故B正确;
“若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”正确,其逆否命题正确;
若p∧q为假命题,则p,q中至少一个为假命题.故D错误.
故选:D.
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
练习册系列答案
相关题目
【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |