题目内容
【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:
①函数的图象具有“可平行性”;
②定义在的奇函数的图象都具有“可平行性”;
③三次函数具有“可平行性”,且对应的两切点, 的横坐标满足;
④要使得分段函数的图象具有“可平行性”,当且仅当.
其中的真命题个数有()
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根。
①函数y=(x2)2+lnx,则y′=2(x2)+ = (x>0),方程,即2x2(4+a)x+1=0,当时有两个相等正根,不符合题意;
②定义在(∞,0)∪(0,+∞)的奇函数,如y=x3, 则,方程,当时有两个相等实数根,不符合题意;
③三次函数f(x)=x3x2+ax+b,则f′(x)=3x22x+a,满足题意时, 的一元二次方程的实数根,即,命题③正确;
④函数y=ex1(x<0),y′=ex∈(0,1),
函数y=x+1x,y′=11x2=x21x2=11x2,由11x2∈(0,1),得1x2∈(0,1),∴x>1,则m=1.
故要使得分段函数的图象具有“可平行性”,
当时, ,且导函数单调递增,
当时, 的值域应该是,
结合幂函数的性质和函数的平移性质可得导函数在上单调递增,且, ,据此可得m=1.
真命题个数为2个.
本题选择B选项.
【题目】某小区一住户在楼顶违规私自建了“阳光房”,该小区其他居民对此意见很大,通过物业和城管部门多次上门协调,该住户终于拆除了“阳光房”,对此有人认为既然已经建成再拆除太可惜了,为此业主委员会通过随机询问小区100名性别不同的居民对此件事情的看法,得到如下的2×2列联表
认为应该拆除 | 认为太可惜了 | 总计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
总计 | 75 | 25 | 100 |
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
K2= ,其中n=a+b+c+d
参照附表,由此可知下列选项正确的是( )
A.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“是否认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“是否认为拆除太可惜了与性别无关”
【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |