题目内容
【题目】设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是( )
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.
【答案】B
【解析】解:∵f(x)是定义在R上的可导函数,
∴可以令f(x)= ,
∴f′(x)= = ,
∵f′(x)>f(x),ex>0,
∴f′(x)>0,
∴f(x)为增函数,
∵正数a>0,
∴f(a)>f(0),
∴ > =f(0),
∴f(a)>eaf(0),
故选B.
【考点精析】本题主要考查了基本求导法则和利用导数研究函数的单调性的相关知识点,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
练习册系列答案
相关题目
【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程x+;
(3)现投入资金10万元,求获得利润的估计值为多少万元?