题目内容
【题目】定义:已知函数在上的最小值为,若恒成立,则称函数在上具有“”性质.
()判断函数在上是否具有“”性质?说明理由.
()若在上具有“”性质,求的取值范围.
【答案】(1)具有(2)
【解析】试题分析:(1)先根据二次函数性质求最小值,再根据定义判断是否具有“”性质,(2)先根据对称轴与定义区间位置关系求函数最小值,再根据定义列不等式,解不等式可得的取值范围.
试题解析:()∵,,
对称轴,开口向上,
当时,取得最小值为,
∴,
∴函数在上具有“”性质.
(),,
其图象的对称轴方程为.
①当,即时,.
若函数具有“”性质,则有总成立,即.
②当,即时,
.
若函数具有“”性质,则有总成立,解得无解.
③当,即时,,
若函数具有“”性质,
则有,解得无解.
综上所述,若在上具有“”性质,则.
【题目】假设关于某设备的使用年限x和所支出的维修费用y(单位:万元)有如下的统计资料:
使用年限x/年 | 2 | 3 | 4 | 5 | 6 |
维修费用y/万元 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系.试求:
(1)回归方程x+的系数.
(2)使用年限为10年时,试估计维修费用是多少.
【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合计 | 50 | 1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同. ①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.