题目内容

已知为函数图象上一点,为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:
(1);(2);(3)证明过程详见解析.

试题分析:本题主要考查导数的应用、不等式、数列等基础知识,考查思维能力、运算能力和思维的严谨性.第一问,考查求导求极值问题;第二问,是恒成立问题,将第一问的代入,整理表达式,得出,构造函数,下面的主要任务是求出函数的最小值,所以;第三问,是不等式的证明,先利用放缩法构造出所证不等式的形式,构造数列,利用累加法得到所证不等式的左边,右边利用裂项相消法求和,再次利用放缩法得到结论.
试题解析:(1)由题意,所以       2分
时,;当时,
所以上单调递增,在上单调递减,故处取得极大值.
因为函数在区间(其中)上存在极值,
所以,得.即实数的取值范围是.        4分
(2)由,令
.                           6分
,则
因为所以,故上单调递增.        8分
所以,从而
上单调递增,
所以实数的取值范围是.                    10分
(3)由(2) 知恒成立,
         12分
,        14分
所以,  ,
将以上个式子相加得:
.               16分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网