搜索
题目内容
若存在正数
,使
成立,则实数
的取值范围是
.
试题答案
相关练习册答案
试题分析:∵存在正数
,使
成立,∴
,∴令
,
∵
,∴
,∴
,∴
.
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
定义在
上的函数
对任意
都有
(
为常数).
(1)判断
为何值时
为奇函数,并证明;
(2)设
,
是
上的增函数,且
,若不等式
对任意
恒成立,求实数
的取值范围.
已知
为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(1)若函数
在区间
上存在极值,求实数
的取值范围;
(2)当
时,不等式
恒成立,求实数
的取值范围;
(3)求证:
.
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值
万元与投入
万元之间满足:
为常数。当
万元时,
万元;
当
万元时,
万元。 (参考数据:
)
(1)求
的解析式;
(2)求该景点改造升级后旅游利润
的最大值。(利润=旅游增加值-投入)。
已知函数
,函数
.
(1)判断函数
的奇偶性;
(2)若当
时,
恒成立,求实数
的最大值.
已知二次函数
,且不等式
的解集为
.
(1)方程
有两个相等的实根,求
的解析式;
(2)
的最小值不大于
,求实数
的取值范围;
(3)
如何取值时,函数
存在零点,并求出零点.
已知函数
,若函数
图象上任意一点
关于原点的对称点
的轨迹恰好是函数
的图象.
(1)写出函数
的解析式;
(2)当
时总有
成立,求
的取值范围.
对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“布林函数”,区间[a,b]称为函数f(x)的“等域区间”.
(1)布林函数
的等域区间是
.
(2)若函数
是布林函数,则实数k的取值范围是
.
记定义在R上的函数
的导函数为
.如果存在
,使得
成立,则称
为函数
在区间
上的“中值点”.那么函数
在区间[-2,2]上“中值点”的为
____
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总