题目内容

2.如图所示,AB为圆O的直径,CB,CD为圆O的切线,B,D为切点.
(1)求证:AD∥OC;
(2)若圆O的半径为2,求AD•OC的值.

分析 (1)连接BD,OD,利用切线的性质,证明BD⊥OC,利用AB为直径,证明AD⊥DB,即可证明AD∥OC;
(2)证明Rt△BAD∽Rt△COB,可得$\frac{AD}{OB}=\frac{AB}{OC}$,即可求AD•OC的值

解答 (1)证明:连接BD,OD,
∵CB,CD是圆O的两条切线,
∴BD⊥OC,
又AB为直径,∴AD⊥DB,
∴AD∥OC.(5分)
(2)解:∵AD∥OC,∴∠DAB=∠COB,
∴Rt△BAD∽Rt△COB,
∴$\frac{AD}{OB}=\frac{AB}{OC}$,
∴AD•OC=AB•OB=8.(10分)

点评 本小题主要考查平面几何的证明,具体涉及到圆的切线的性质,三角形相似等内容.本小题重点考查考生对平面几何推理能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网