题目内容
12.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的长.
分析 (I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是$\widehat{AB}$所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.
(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,进而根据sin∠ACD=sin∠AEB,AE=$\frac{AB}{sin∠AEB}$,即可得出答案.
解答 证明:(I)如图所示,连接BE.
∵AE是⊙O的直径,∴∠ABE=90°.
又∠E与∠ACB都是$\widehat{AB}$所对的圆周角,
∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∴AB•AC=AD•AE.
又AB=BC,
∴BC•AC=AD•AE.
解:(II)∵CF是⊙O的切线,
∴CF2=AF•BF,
∵AF=2,CF=2$\sqrt{2}$,
∴(2$\sqrt{2}$)2=2BF,解得BF=4.
∴AB=BF-AF=2.
∵∠ACF=∠FBC,∠CFB=∠AFC,
∴△AFC∽△CFB,
∴AF:FC=AC:BC,
∴AC=$\frac{AF•BC}{CF}$=$\sqrt{2}$.
∴cos∠ACD=$\frac{\sqrt{2}}{4}$,
∴sin∠ACD=$\frac{\sqrt{14}}{4}$=sin∠AEB,
∴AE=$\frac{AB}{sin∠AEB}$=$\frac{4\sqrt{14}}{7}$
点评 本题考查了圆的性质、三角形相似、切割线定理,属于中档题.
练习册系列答案
相关题目
20.在复平面上,复数z=$\frac{3+i}{1+i}$对应的点在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
17.一个小组的3个学生在分发数学作业时,从他们3人的作业中各随机地取出2份作业,则每个学生拿的都不是自己作业的概率是( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |