题目内容
【题目】设函数().
(1)讨论函数的单调性;
(2)若关于x的方程有唯一的实数解,求a的取值范围.
【答案】(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.
【解析】
(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;
(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.
(1),
当时,恒成立,
当时,,
综上,当时,递增区间时,无递减区间,
当时,递增区间时,递减区间时;
(2),
令,原方程只有一个解,只需只有一个解,
即求只有一个零点时,的取值范围,
由(1)得当时,在单调递增,
且,函数只有一个零点,原方程只有一个解,
当时,由(1)得在出取得极小值,也是最小值,
当时,,此时函数只有一个零点,
原方程只有一个解,
当且
递增区间时,递减区间时;
,当,
有两个零点,
即原方程有两个解,不合题意,
所以的取值范围是或.
【题目】长沙某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕.根据往年销售经验,每天的需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为600桶;如果最高气温(单位:)位于区间,需求量为400桶;如果最高气温低于,需求量为200桶.为了确定今年九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表:
最高气温() | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求九月份这种冰激凌一天的需求量(单位:桶)的分布列;
(2)设九月份一天销售这种冰激凌的利润为(单位:元),当九月份这种冰激凌一天的进货量(单位:桶)为多少时,的均值取得最大值?