题目内容
【题目】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求△AF1F2的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.
【答案】(1)6;(2)-4;(3)或.
【解析】
(1)根据椭圆定义可得,从而可求出的周长;
(2)设,根据点在椭圆上,且在第一象限,,求出,根据准线方程得点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;
(3)设出设,点到直线的距离为,由点到直线的距离与,可推出,根据点到直线的距离公式,以及满足椭圆方程,解方程组即可求得坐标.
(1)∵椭圆的方程为
∴,
由椭圆定义可得:.
∴的周长为
(2)设,根据题意可得.
∵点在椭圆上,且在第一象限,
∴
∵准线方程为
∴
∴,当且仅当时取等号.
∴的最小值为.
(3)设,点到直线的距离为.
∵,
∴直线的方程为
∵点到直线的距离为,
∴
∴
∴①
∵②
∴联立①②解得,.
∴或.
练习册系列答案
相关题目