题目内容
18.求下列函数的导数.(1)y=$\frac{\sqrt{{x}^{5}}+\sqrt{{x}^{7}}+\sqrt{{x}^{9}}}{\sqrt{x}}$;
(2)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(3)y=$\frac{1+\sqrt{x}}{1-\sqrt{x}}$+$\frac{1-\sqrt{x}}{1+\sqrt{x}}$.
分析 分别先化简,再根据导数的运算法则求导即可.
解答 解:(1)y=$\frac{\sqrt{{x}^{5}}+\sqrt{{x}^{7}}+\sqrt{{x}^{9}}}{\sqrt{x}}$=x2+x3+x4,∴y′=2x+3x2+4x3,
(2)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$=(sin2$\frac{x}{4}$+cos2$\frac{x}{4}$)2-2sin2$\frac{x}{4}$cos2$\frac{x}{4}$=1-sin2$\frac{x}{2}$=1-$\frac{1}{2}$(1-cosx)=$\frac{1}{2}$+$\frac{1}{2}$cosx,∴y′=-$\frac{1}{2}$sinx,
(3)y=$\frac{1+\sqrt{x}}{1-\sqrt{x}}$+$\frac{1-\sqrt{x}}{1+\sqrt{x}}$=$\frac{2+2x}{1-x}$=-2-$\frac{4}{x-1}$,∴y′=$\frac{4}{(x-1)^{2}}$.
点评 本题考查了导数的运算法则和三角形函数的化简,属于基础题.
练习册系列答案
相关题目
7.一次考试中,五名学生的数学、物理成绩如下表所示:
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
学生 | A1 | A2 | A3 | A4 | A5 |
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
8.若实数x,y满足$\left\{\begin{array}{l}{x-2y+2<0}\\{x>0}\\{y<2}\end{array}\right.$,则$\frac{y}{x-1}$的取值范围为( )
A. | (-∞,-1)∪(2,+∞) | B. | (-∞,-1)∪(0,2) | C. | (-1,0)∪(0,2) | D. | (-1,2) |