题目内容
【题目】已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集.
(1)当t=4时,求A∪B及A∩RB;
(2)若A∪B=A,求实数t的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)由二次不等式的解法得:,由集合的交、并、补的运算得,,所以,,(2)由集合间的包含关系得:因为,得:,讨论①,②时,运算即可得解.
(1)解二次不等式x2-7x+6<0得:1<x<6,即A=(1,6),
当t=4时,B=(0,4),CRB=,
所以A∪B=(0,6),A∩CRB=[4,6),
故答案为:A∪B=(0,6),A∩CRB=[4,6),
(2)由A∪B=A,得:B A,
①当4-t≥t即t≤2时,B=,满足题意,
②B≠时,
由BA得:,
解得:2<t≤3,
综合①②得:
实数t的取值范围为:t≤3,
故答案为:t≤3.
【题目】某校600名文科学生参加了4月25日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);
(2)抽出的100名学生的数学、外语成绩如下表:
外语 | ||||
优 | 良 | 及格 | ||
数学 | 优 | 8 | m | 9 |
良 | 9 | n | 11 | |
及格 | 8 | 9 | 11 |
若数学成绩优秀率为35%,求m,n的值;
(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
80≤R<150 | 150≤R<250 | R≥250 | |
纯电动乘用车 | 3.5万元/辆 | 5万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
80≤R<150 | 2 | 0.2 |
150≤R<250 | 5 | x |
R≥250 | y | z |
合计 | M | 1 |
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.