题目内容
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
80≤R<150 | 150≤R<250 | R≥250 | |
纯电动乘用车 | 3.5万元/辆 | 5万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
80≤R<150 | 2 | 0.2 |
150≤R<250 | 5 | x |
R≥250 | y | z |
合计 | M | 1 |
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.
【答案】解:(Ⅰ) 由表格知 =0.2,∴M=10, ∴ ,y=10﹣2﹣5=3,
∴z= =0.3.
(Ⅱ)设“从这10辆纯电动车中任选2辆,选到的2辆车的续驶里程都不低于150公里”为事件A,
则P(A)= = .
(Ⅲ)X的可能取值为3.5,5,6,
P(X=3.5)=0.2,
P(X=5)=0.5,
P(X=6)=0.3,
∴X的分布列为:
X | 3.5 | 5 | 6 |
P | 0.2 | 0.5 | 0.3 |
∴EX=3.5×0.2+5×0.5+6×0.3=5
【解析】(Ⅰ)利用频率统计表能求出x,y,z,M的值.(Ⅱ)设“从这10辆纯电动车中任选2辆,选到的2辆车的续驶里程都不低于150公里”为事件A,利用古典概率的计算公式能求出选到的2辆车续驶里程都不低于150公里的概率.(Ⅲ)X的可能取值为3.5,5,6,分别求出P(X=3.5),P(X=5),P(X=6),由此能求出X的分布列和数学期望.
练习册系列答案
相关题目