题目内容

【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:

喜欢看足球比赛

不喜欢看足球比赛

总计

总计


(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2= ,其中n=a+b+c+d
参考数据:

P(K2≥k0

0.4

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

【答案】
(1)解:2×2列联表:

喜欢看足球比赛

不喜欢看足球比赛

总计

8

4

12

4

6

10

总计

12

10

22


(2)解:K2= ≈1.564<2.706

因此,在犯错的概率不超过0.10的前提下不能认为性别与喜欢看足球比赛有关


(3)解:喜欢看足球比赛的人数为ξ的取值分别为:0,1,2,

P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= =

ξ的分布列

ξ

0

1

2

P

数学期望Eξ=0× +1× +2× =


【解析】(1)本题是一个简单的数字的运算,根据a,b,c,d的已知和未知的结果,做出空格处的结果.(2)由已知数据可求得观测值,把求得的观测值同临界值进行比较,得到在犯错的概率不超过0.10的前提下不能判断性别与喜欢看足球比赛有关.(3)喜欢看足球比赛的人数为ξ,ξ的取值分别为0,1,2,结合变量对应的事件利用等可能事件的概率公式做出概率,写出分布列和期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网