题目内容
【题目】在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).
【答案】
(1)解:方法一:设“该人中奖”为事件A,
则
方法二:
即该顾客中奖的概率为 .
(2)解:X的所有可能值为0,10,50,60
,
,
,
,
故X的分布列如下.
X | 0 | 10 | 50 | 60 |
P |
(元)
【解析】(1)法一:由已知利用对立事件概率计算公式能求出该人中奖的概率.法二:由已知利用互事件概率计算公式能求出该顾客中奖的概率.(2)X的所有可能值为0,10,50,60,分别求出相应的概率,由此能求出X的分布列和数学期望.
【考点精析】掌握离散型随机变量及其分布列是解答本题的根本,需要知道在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛 | 不喜欢看足球比赛 | 总计 | |
男 | |||
女 | |||
总计 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2= ,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |