题目内容

16.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=2,b1=1,b2+S2=8,S2=(b2+1)q
(1)求数列{an}与{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

分析 (1)根据等差数列和等比数列的通项公式即可求数列{an}与{bn}的通项公式;
(2)求出数列{cn}的通项公式,利用错位相减法进行求和即可.

解答 解:(Ⅰ)由已知可得$\left\{\begin{array}{l}{q+2+{a}_{2}=8}\\{2+{a}_{2}=(q+1)q}\end{array}\right.$,消去a2得:q2+2q-8=0,
解得q=2或q=-4(舍),…(3分)
∴a2=4,d=2,从而an=2n,bn=2n-1…(6分)
(Ⅱ)由(Ⅰ)知,则cn=$\frac{{a}_{n}}{{b}_{n}}$=2n•($\frac{1}{2}$)n-1
则Tn=2•($\frac{1}{2}$)0+4•($\frac{1}{2}$)1+…+2(n-1)•($\frac{1}{2}$)n-2+2n•($\frac{1}{2}$)n-1.①
$\frac{1}{2}$Tn=2•($\frac{1}{2}$)1+4•($\frac{1}{2}$)2+…+2(n-1)•($\frac{1}{2}$)n-1+2n•($\frac{1}{2}$)n.②
两式作差得$\frac{1}{2}$Tn=2•($\frac{1}{2}$)0+2•($\frac{1}{2}$)1+…+2•($\frac{1}{2}$)n-1-2n•($\frac{1}{2}$)n
=$\frac{2[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-2n•($\frac{1}{2}$)n=4-(4+2n)•($\frac{1}{2}$)n
∴Tn=8-(4+2n)•($\frac{1}{2}$)n,(12分)

点评 本题主要考查等差数列和等比数列的通项公式的求解,以及利用错位相减法进行求和,考查学生的运算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网