题目内容
6.若数列{an}的前n项和为Sn,对任意正整数n都有4an-3Sn=8.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n-1$\frac{4(n+1)}{{{{log}_2}{a_n}{{log}_2}{a_{n+1}}}}$,求数列{bn}的前n项和Tn.
分析 (I)利用递推式、等比数列的通项公式即可得出;
(II)利用对数的运算性质、“裂项求和”即可得出.
解答 解:(Ⅰ)由4an-3Sn=8,当n=1时,得4a1-3a1=8,解得a1=8.
由4an-3Sn=8…①,
当n≥2时,4an-1-3Sn-1=8…②,
①-②得:an=4an-1,
∴数列{an}是(首项a1=8,公比q=4的)等比数列,
∴${a_n}={a_1}{q^{n-1}}=8×{4^{n-1}}={2^{2n+1}}$,
(Ⅱ)由(1)log2an=2n+1知:${b_n}={(-1)^{n-1}}\frac{4(n+1)}{{{{log}_2}{a_n}{{log}_2}{a_{n+1}}}}={(-1)^{n-1}}\frac{4((n+1))}{(2n+1)(2n+3)}$,
∴${b_n}={(-1)^{n-1}}({\frac{1}{2n+1}+\frac{1}{2n+3}})$,
当n为偶数时,${T_n}=(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})+…+(\frac{1}{2n-1}+\frac{1}{2n+1})-(\frac{1}{2n+1}+\frac{1}{2n+3})$=$\frac{1}{3}-\frac{1}{2n+3}$,
当n为奇数时,${T_n}=(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})+…-(\frac{1}{2n-1}+\frac{1}{2n+1})+(\frac{1}{2n+1}+\frac{1}{2n+3})$=$\frac{1}{3}+\frac{1}{2n+3}$.
∴Tn=$\left\{\begin{array}{l}{\frac{1}{3}+\frac{1}{2n+3},n为奇数}\\{\frac{1}{3}-\frac{1}{2n+3},n为偶数}\end{array}\right.$.
点评 本题考查了递推式的应用、等比数列的通项公式、对数的运算性质,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
A. | y=cos($\frac{x}{2}-\frac{π}{6}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=cos(2x-$\frac{π}{6}$) | D. | y=sin(2x+$\frac{π}{6}$) |
A. | $6\sqrt{5}$ | B. | $3\sqrt{5}$ | C. | $6\sqrt{3}$ | D. | $3\sqrt{3}$ |
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |