题目内容
【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.
年龄 分组 | 抽取份数 | 答对全卷 的人数 | 答对全卷的人数 占本组的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | 27 | 0.9 | |
[40,50) | 10 | 4 | |
[50,60] | 20 | 0.1 |
(1)分别求出, , , 的值;
(2)从年龄在答对全卷的人中随机抽取2人授予“环保之星”,求年龄在的人中至少有1人被授予“环保之星”的概率.
【答案】(1), , , ;(2).
【解析】试题分析:(1)由抽取总问卷为100份可得的值,由抽取份数为10份,答对全卷人数为4人可得的值,由抽取份数为20份,答对全卷的人数占本组的概率为可得的值,由频率分布直方图中,各频率之和等于1可得的值;(2)利用列举法写出抽取2人授予“环保之星”的所有基本事件,并从中找出年龄在的人中至少有1人被授予“环保之星”的基本事件,利用古典概型公式求出概率.
试题解析:(1)因为抽取总问卷为100份,所以. 1分
年龄在中,抽取份数为10份,答对全卷人数为4人,所以. 2分
年龄在中,抽取份数为20份,答对全卷的人数占本组的概率为,
所以,解得. 3分
根据频率直方分布图,得,
解得. 4分
(2)因为年龄在与中答对全卷的人数分别为4人与2人.
年龄在中答对全卷的4人记为, , , ,年龄在中答对全卷的2人记为, ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是: , , , , , , , , , , , , , , 共15种. 8分
其中所抽取年龄在的人中至少有1人被授予“环保之星”的情况是: , , , , , , , , 共9种. 11分
故所求的概率为. 12分
【题目】4月23日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(Ⅱ)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“读书迷”的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照、、、、均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.